图像标题生成是视觉和语言域交集中最具挑战性的问题之一。在这项工作中,我们提出了一个现实的字幕任务,其中输入场景可能包含没有相应的视觉或文本培训示例的视觉对象。对于此问题,我们提出了一种检测驱动的方法,该方法由单阶段的广义零弹声检测模型组成,以识别和本地化可见和看不见的类的实例,以及将检测转换为句子的基于模板的字幕模型。为了改善广泛的零射击检测模型,该模型为字幕提供了必不可少的信息,我们在班级到类的语义相似性方面定义了有效的课堂表示,并利用其特殊结构来构建有效的看不见/可见的类置信度得分校准机制。我们还提出了一个新颖的评估指标,该指标通过分别测量生成句子的视觉和非视觉内容来为字幕输出提供其他见解。我们的实验强调了在提出的零射击设置中研究字幕的重要性,并验证提出的检测驱动的零射击字幕方法的有效性。
translated by 谷歌翻译
光声(OA)成像基于对生物组织的激发,该组织具有纳米持续激光脉冲,然后随后检测通过光吸收介导的热弹性扩张产生的超声波。 OA成像具有丰富的光学对比度和深层组织高分辨率之间的强大组合。这使得在临床和实验室环境中都可以探索许多有吸引力的新应用程序。但是,没有使用不同类型的实验设置和相关处理方法生成的标准化数据集,可以促进OA在临床环境中的更广泛应用中的进步。这使新的和已建立的数据处理方法之间的客观比较变得复杂,通常会导致定性结果和对数据的任意解释。在本文中,我们提供实验性和合成OA原始信号以及带有不同实验参数和层析成像采集几何形状的重建图像结构域数据集。我们进一步提供了训练有素的神经网络,以应对与OA图像处理相关的三个重要挑战,即在有限的视图层析成像条件下准确重建,去除空间不足的采样伪像以及解剖学细分,以改善图像重建。具体而言,我们将与上述挑战相对应的18个实验定义为用于开发更先进处理方法的参考的基准。
translated by 谷歌翻译
在线旅行社(OTA)的网站在元搜索竞标引擎上宣传。预测酒店将收到的单击数量的给定出价金额的问题是管理元搜索引擎上OTA广告活动的重要一步,因为出价时间的点击次数定义了要生成的成本。在这项工作中,各种回归器都结束了,以提高点击预测性能。按照预处理程序,将功能集分为火车和测试组,具体取决于样品的记录日期。然后,将数据收集进行基于XGBoost的缩小降低,从而大大降低了特征的维度。然后通过将贝叶斯高参数优化应用于XGBoost,LightGBM和SGD模型来找到最佳的高参数。单独测试了十种不同的机器学习模型,并将它们组合在一起以创建合奏模型。提出了三种替代合奏解决方案。相同的测试集用于测试单个和集合模型,46个模型组合的结果表明,堆栈集合模型得出所有的R2分数。总之,整体模型将预测性能提高了约10%。
translated by 谷歌翻译
可穿戴设备和医疗器互联网(IOMT)的最新发展允许实时监控和记录心电图(ECG)信号。然而,由于能量和内存约束,对ECG信号的连续监测在低功耗可穿戴设备中具有挑战性。因此,在本文中,我们提出了一种新颖和节能的方法,用于连续监测低功耗可穿戴设备的心脏。所提出的方法由三个不同的层组成:1)噪声/伪像检测层,以级别ECG信号的质量; 2)正常/异常拍摄分类层以检测心电图信号中的异常,3)异常搏动分类层以检测来自ECG信号的疾病。此外,分布式多输出卷积神经网络(CNN)架构用于降低边缘/云之间的能量消耗和等待时间。我们的方法论在众所周知的MIT-BIH心律失常数据集上达到了99.2%的准确性。 Real硬件的评估表明,我们的方法是适用于具有32KB最小RAM的设备。此外,与最先进的工作相比,所提出的方法可以获得7美元的能效。
translated by 谷歌翻译
多武装匪徒(MAB)在各种设置中进行广泛研究,其中目标是\ Texit {Maximize}随着时间的推移{Maximize}的措施(即,奖励)。由于安全在许多现实世界问题中至关重要,因此MAB算法的安全版本也获得了相当大的兴趣。在这项工作中,我们通过\ Texit {线性随机炸药杆}的镜头来解决不同的关键任务,其中目的是将动作靠近目标级别的结果,同时尊重\ Texit {双面}安全约束,我们调用\ textit {lecoling}。这种任务在许多域中普遍存在。例如,许多医疗保健问题要求在范围内保持生理变量,并且优选地接近目标水平。我们客观的激进变化需要一种新的采购策略,它是MAB算法的核心。我们提出Sale-LTS:通过线性汤普森采样算法进行安全调整,采用新的采集策略来适应我们的任务,并表明它达到了同一时间和维度依赖的索姆林的遗憾,因为以前的经典奖励最大化问题缺乏任何安全约束。我们通过彻底的实验展示并讨论了我们的算法的经验性能。
translated by 谷歌翻译
寻找最佳个性化的治疗方案被认为是最具挑战性的精确药物问题之一。各种患者特征会影响对治疗的反应,因此,没有一种尺寸适合 - 所有方案。此外,甚至在治疗过程中均不服用单一不安全剂量可能对患者的健康产生灾难性后果。因此,个性化治疗模型必须确保患者{\ EM安全} {\ EM有效}优化疗程。在这项工作中,我们研究了一种普遍的和基本的医学问题,其中治疗旨在在范围内保持生理变量,优选接近目标水平。这样的任务也与其他域中相关。我们提出ESCADA,这是一个用于这个问题结构的通用算法,在确保患者安全的同时制作个性化和背景感知最佳剂量推荐。我们在Escada的遗憾中获得了高概率的上限以及安全保证。最后,我们对1型糖尿病疾病的{\ em推注胰岛素剂量}分配问题进行了广泛的模拟,并比较ESCADA对汤普森采样,规则的剂量分配者和临床医生的表现。
translated by 谷歌翻译
图形神经网络(GNN)已被证明具有强大的表示能力,可以利用该图形在图形结构数据(例如分子和社交网络)上的下游预测任务。他们通常通过从单个顶点的$ K $ - 霍普社区或图表中的枚举步行中汇总信息来学习表示形式。先前的研究表明,将加权方案纳入GNN的有效性。但是,到目前为止,这主要仅限于$ k $ hop的社区GNNS。在本文中,我们旨在设计一种将加权方案纳入步行式GNN并分析其效果的算法。我们提出了一种称为Aware的新型GNN模型,该模型使用注意方案汇总了有关图中的步行的信息。这导致了在标准设置中用于图形预测任务的端到端监督学习方法,其中输入是图形的邻接和顶点信息,并且输出是图形的预测标签。然后,我们对Aware进行理论,经验和解释性分析。我们在简化设置中的理论分析确定了可证明的保证的成功条件,证明了图表信息如何在表示中编码,以及意识中的加权方案如何影响表示和学习绩效。我们的实验表明,在分子财产预测和社交网络领域的标准设置中,在图形预测任务中意识到的强劲表现。最后,我们的解释研究表明,意识到可以成功捕获输入图的重要子结构。该代码可在$ \ href {https://github.com/mehmetfdemirel/aware} {github} $上获得。
translated by 谷歌翻译
冷冻切片(FS)是手术操作期间组织微观评估的制备方法。该程序的高速允许病理学医师快速评估关键的微观特征,例如肿瘤边距和恶性地位,以引导手术决策,并尽量减少对操作过程的干扰。然而,FS容易引入许多误导性的人工结构(组织学人工制品),例如核冰晶,压缩和切割人工制品,妨碍了病理学家的及时和准确的诊断判断。额外的培训和长期经验通常需要对冻结部分进行高度有效和时间关键的诊断。另一方面,福尔马林固定和石蜡嵌入(FFPE)的黄金标准组织制备技术提供了显着优越的图像质量,而是一种非常耗时的过程(12-48小时),使其不适合术语用。在本文中,我们提出了一种人工智能(AI)方法,通过在几分钟内将冻结的整个幻灯片(FS-WSIS)计算冻结的整个幻灯片(FS-WSIS)来改善FS图像质量。 AI-FFPE将FS人工制品终止了注意力机制的指导,该引导机制在利用FS输入图像和合成的FFPE样式图像之间利用建立的自正则化机制,以及综合相关特征的合成的FFPE样式图像。结果,AI-FFPE方法成功地生成了FFPE样式图像,而不会显着扩展组织处理时间,从而提高诊断准确性。我们证明了使用各种不同的定性和定量度量,包括来自20个董事会认证的病理学家的视觉图灵测试的各种不同的定性和定量度量。
translated by 谷歌翻译
人类活动识别(HAR)是健康监测的关键应用之一,需要连续使用可穿戴设备来跟踪日常活动。本文提出了一种适用于适用于低功率边缘装置的节能HAR(AHAR)的自适应CNN。与传统的早期退出架构不同,这是基于分类信心的出口决策,AHAR提出了一种新的自适应架构,其使用输出块预测器选择在推理阶段期间使用的基线架构的一部分。实验结果表明,传统的早期退出架构遭受性能损失,而我们的自适应架构提供类似或更好的性能作为基线,同时节能。我们验证了从两个数据集合机会和W-Har分类机置活动的方法。与机会数据集的雾/云计算方法相比,我们的基线和自适应架构分别显示了相当的加权F1得分为91.79%,分别为91.57%。对于W-HAR数据集,我们的基线和自适应架构分别优于最先进的工程,其加权F1分别为97.55%和97.64%。与机会数据集的作品相比,真实硬件对真实硬件的评估表明,我们的基线架构是显着的节能(少422.38倍)和记忆效率(14.29倍)。对于W-Har DataSet,与最先进的工作相比,我们的基线架构需要2.04倍的能量和2.18倍的内存。此外,实验结果表明,我们的自适应架构是12.32%(机会)和11.14%(W-HAR)的节能,而不是我们的基线,同时提供类似的(机会)或更好的(W-HAR)性能,没有显着的记忆开销。
translated by 谷歌翻译
自我监督的学习表现出了巨大的希望,因为它可以在没有完全采样的数据的情况下训练深度学习MRI重建方法。当前用于物理学指导的重建网络的自我监督的学习方法分裂获得了两个不相交的数据,其中一种用于独立网络中的数据一致性(DC),另一个用于定义培训损失。在这项研究中,我们提出了一种改进的自我监督学习策略,该策略更有效地使用获得的数据来训练物理学指导的重建网络,而无需数据完全采样的数据。提出的通过数据下采样(SSDU)对所提出的多掩码自我监督的学习(SSDU)应用于获得的测量结果,将其分为每个训练样本的多对不相交集,而使用这些对DC单位和DC单位和其中一对,其他用于定义损失的,从而更有效地使用了不足采样的数据。多面罩SSDU应用于完全采样的3D膝盖上,并前瞻性地采样3D脑MRI数据集,用于各种加速度和图案,并与CG-Sense和单膜ssdu dl-MRI以及受监督的DL-MRI以及当时的DL-MRI进行比较。提供了完全采样的数据。膝盖MRI的结果表明,提出的多面罩SSDU胜过SSDU,并与受监督的DL-MRI紧密相关。一项临床读者的研究进一步将多面罩SSDU在SNR和混叠伪影方面高于监督的DL-MRI。大脑MRI的结果表明,与SSDU相比,多面罩SSDU可以达到更好的重建质量。读者的研究表明,与单罩SSDU相比,r = 8时的多面膜SSDU显着改善了重建,r = 8,以及r = 2时的CG-Sense。
translated by 谷歌翻译